import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
#模型
model = keras.Sequential()
# 1st Convolutional Layer
model.add(layers.Conv2D(input_shape=(227,227,3),filters=96,kernel_size=[11,11],strides=(4,4),padding='valid',activation='relu'))
model.add(layers.MaxPool2D(pool_size=(3,3),strides=(2,2),padding='valid'))
# 2nd Convolutional Layer
model.add(layers.Conv2D(filters=256,kernel_size=[5,5],strides=(1,1),padding='same',activation='relu'))
model.add(layers.MaxPool2D(pool_size=(3,3),strides=(2,2),padding='valid'))
# 3rd Convolutional Layer
model.add(layers.Conv2D(filters=384,kernel_size=[3,3],strides=(1,1),padding='same',activation='relu'))
# 4th Convolutional Layer
model.add(layers.Conv2D(filters=384,kernel_size=[3,3],strides=(1,1),padding='same',activation='relu'))
# 5th Convolutional Layer
model.add(layers.Conv2D(filters=256,kernel_size=[3,3],strides=(1,1),padding='same',activation='relu'))
model.add(layers.MaxPool2D(pool_size=(3,3),strides=(2,2),padding='valid'))
# Passing it to a Fully Connected layer
model.add(layers.Flatten())
# 6th Fully Connected Layer
model.add(layers.Dense(4096,activation='relu'))
model.add(layers.Dropout(0.5))
# 7th Fully Connected Layer
model.add(layers.Dense(4096,activation='relu'))
model.add(layers.Dropout(0.5))
# Output Layer
model.add(layers.Dense(1000,activation='softmax'))
model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_25 (Conv2D) (None, 55, 55, 96) 34944
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 27, 27, 96) 0
_________________________________________________________________
conv2d_26 (Conv2D) (None, 27, 27, 256) 614656
_________________________________________________________________
max_pooling2d_14 (MaxPooling (None, 13, 13, 256) 0
_________________________________________________________________
conv2d_27 (Conv2D) (None, 13, 13, 384) 885120
_________________________________________________________________
conv2d_28 (Conv2D) (None, 13, 13, 384) 1327488
_________________________________________________________________
conv2d_29 (Conv2D) (None, 13, 13, 256) 884992
_________________________________________________________________
max_pooling2d_15 (MaxPooling (None, 6, 6, 256) 0
_________________________________________________________________
flatten_3 (Flatten) (None, 9216) 0
_________________________________________________________________
dense_12 (Dense) (None, 4096) 37752832
_________________________________________________________________
dropout_9 (Dropout) (None, 4096) 0
_________________________________________________________________
dense_13 (Dense) (None, 4096) 16781312
_________________________________________________________________
dropout_10 (Dropout) (None, 4096) 0
_________________________________________________________________
dense_14 (Dense) (None, 1000) 4097000
_________________________________________________________________
dropout_11 (Dropout) (None, 1000) 0
_________________________________________________________________
dense_15 (Dense) (None, 1000) 1001000
=================================================================
Total params: 63,379,344
Trainable params: 63,379,344
Non-trainable params: 0
_________________________________________________________________
版权声明:原创,转载请注明来源,否则律师函警告
本博客所有文章除特别声明外,均采用 CC BY-SA 3.0协议 。转载请注明出处!